Sec24D-Dependent Transport of Extracellular Matrix Proteins Is Required for Zebrafish Skeletal Morphogenesis
نویسندگان
چکیده
Protein transport from endoplasmic reticulum (ER) to Golgi is primarily conducted by coated vesicular carriers such as COPII. Here, we describe zebrafish bulldog mutations that disrupt the function of the cargo adaptor Sec24D, an integral component of the COPII complex. We show that Sec24D is essential for secretion of cartilage matrix proteins, whereas the preceding development of craniofacial primordia and pre-chondrogenic condensations does not depend on this isoform. Bulldog chondrocytes fail to secrete type II collagen and matrilin to extracellular matrix (ECM), but membrane bound receptor beta1-Integrin and Cadherins appear to leave ER in Sec24D-independent fashion. Consequently, Sec24D-deficient cells accumulate proteins in the distended ER, although a subset of ER compartments and Golgi complexes as visualized by electron microscopy and NBD C(6)-ceramide staining appear functional. Consistent with the backlog of proteins in the ER, chondrocytes activate the ER stress response machinery and significantly upregulate BiP transcription. Failure of ECM secretion hinders chondroblast intercalations thus resulting in small and malformed cartilages and severe craniofacial dysmorphology. This defect is specific to Sec24D mutants since knockdown of Sec24C, a close paralog of Sec24D, does not result in craniofacial cartilage dysmorphology. However, craniofacial development in double Sec24C/Sec24D-deficient animals is arrested earlier than in bulldog/sec24d, suggesting that Sec24C can compensate for loss of Sec24D at initial stages of chondrogenesis, but Sec24D is indispensable for chondrocyte maturation. Our study presents the first developmental perspective on Sec24D function and establishes Sec24D as a strong candidate for cartilage maintenance diseases and craniofacial birth defects.
منابع مشابه
The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis
Craniofacial and skeletal dysmorphologies account for the majority of birth defects. A number of the disease phenotypes have been attributed to abnormal synthesis, maintenance and composition of extracellular matrix (ECM), yet the molecular and cellular mechanisms causing these ECM defects remain poorly understood. The zebrafish feelgood mutant manifests a severely malformed head skeleton and s...
متن کاملHsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin
Skeletal morphogenesis describes how bones achieve their correct shape and size and appropriately position joints. We use the regenerating caudal fin of zebrafish to study this process. Our examination of the fin length mutant short fin (sof (b123)) has revealed that the gap junction protein Cx43 is involved in skeletal morphogenesis by promoting cell proliferation and inhibiting joint formatio...
متن کاملDisruption of the Sec24d Gene Results in Early Embryonic Lethality in the Mouse
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other S...
متن کاملSelective export of human GPI-anchored proteins from the endoplasmic reticulum.
Selective export of transmembrane proteins from the endoplasmic reticulum (ER) relies on recognition of cytosolic-domain-localized transport signals by the Sec24 subunit of the COPII vesicle coat. Human cells express four Sec24 isoforms, termed Sec24A, Sec24B, Sec24C and Sec24D that are differentially required for selective, signal-mediated ER export of transmembrane proteins. By contrast, lumi...
متن کاملProteomics Analysis of the Zebrafish Skeletal Extracellular Matrix
The extracellular matrix of the immature and mature skeleton is key to the development and function of the skeletal system. Notwithstanding its importance, it has been technically challenging to obtain a comprehensive picture of the changes in skeletal composition throughout the development of bone and cartilage. In this study, we analyzed the extracellular protein composition of the zebrafish ...
متن کامل